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Abstract: In this paper, we propose two new generalized gamma-generated distri-
butions with any base distribution. In particular, we obtain the generalized gamma-
generated exponential Weibull distribution (GG-EW) and generalized gamma-
generated Dagum distribution (GG-Dagum). We study some mathematical proper-
ties of the new distributions, including explicit formulas for the probability density
function, cumulative distribution function, by using Gauss’ hypergeometric and
Meijer G functions. It is shown, in general, that the generalized gamma-generated
distributions are infinite linear combinations of the powers of the base distribution.
Incorrect results given earlier by other authors are pointed out. We applied the
distributions in the following data sets: (a) spending on public education in various
countries in 2003 and (b) total expenditure on health in 2009 in various countries.
The results show that the distributions fit well the data sets. The general R codes
for fitting the distributions introduced in this paper are given in Appendix.
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1. Introduction

In this section, we give two known distributions which will be used later on. The
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exponentiated Weibull (EW) distribution and density functions for a random vari-
able Y > 0 are defined by [4]

F01(y) =
[
1− e−uyv

]α
, y, u, v, α > 0, (1)

and
f01(y) = uvαyv−1e−uy

v [
1− e−uyv

]α−1
, y, u, v, α > 0. (2)

The Dagum distribution and density functions [2] for a random variable Y > 0 are
given respectively by

F02(y) =
[
1 + λy−α

]−β
, y, α, β, λ > 0, (3)

and
f02(y) = αβλy−α−1

[
1 + λy−α

]−β−1
, y, α, β, λ > 0. (4)

The paper is divided as follows: Section 2 deals with the two definitions of the
generalized gamma-generated distributions. In Theorems 2.1 and 2.4, the two dis-
tributions are expressed in terms of confluent hypergeometric function 1F1. The-
orem 2.2 gives a series expansion to be used in Theorems 2.3 and 2.5, where the
generalized distributions are expressed as an infinite linear combinations of powers
of base distributions. Incorrect results given by other authors are pointed out. In
Section 3, GG-EW and GG-Dagum distributions are introduced which were used in
Section 4 to analyse two data sets involving expenditures on education and health.

2. Generalized Gamma-generated distributions

Let a random variable X has base distribution and density functions F (x) and
f(x) respectively. Then the generalized gamma-generated distribution and density
functions for a random variable X are defined respectively by

H1(x) =
cba/c

Γ(a/c)

∫ −ln(1−F (x))

0

wa−1e−bw
c

dw, a, b, c > 0, (5)

and

h1(x) =
cba/c

Γ(a/c)

(−ln(1− F (x)))a−1e−b(−ln(1−F (x)))cf(x)

1− F (x)
. (6)

Another definition produces the following generalized gamma-generated distri-
bution and density functions

H2(x) = 1− cba/c

Γ(a/c)

∫ −ln(F (x))

0

wa−1e−bw
c

dw, a, b, c > 0, (7)
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and

h2(x) =
cba/c

Γ(a/c)

(−ln(F (x)))a−1e−b(−ln(F (x)))cf(x)

F (x)
. (8)

Theorem 2.1. The first generalized gamma-generated class of distribution corre-
sponding to base distribution F0(x) are given by

H1(x) =
ba/c

Γ(1 + a/c)
(−ln(1− F0(x)))a 1F1

(a
c

; 1 +
a

c
;−b (−ln(1− F0(x)))c

)
. (9)

The corresponding density function is

h1(x) =
cba/c

Γ(a/c)
(−ln(1− F0(x)))a−1e−b(−ln(1−F0(x)))c

f0(x)

1− F0(x)
. (10)

Proof. The generalized-generated class of distributions corresponding to base
distribution F0(x) are given by

H1(x) =
cba/c

Γ(a/c)

∫ −ln(1−F0(x))

0

ua−1e−bu
c

du

=
cba/c

Γ(a/c)

∫ −ln(1−F0(x))

0

G1,0
0,1

[
buc
∣∣∣∣ (a− 1)/c

]
=

cba/c

Γ(a/c)

1

2πi

∫
L

Γ

(
a− 1

c
− s
)
bs
∫ −ln(1−F0(x))

0

ucsduds

=
cba/c

Γ(a/c)

1

2πi

∫
L

Γ

(
a− 1

c
− s
)
bs

[−ln(1− F0(x))]cs+1

c(s+ 1/c)
ds, Re(cs+ 1) > 0

=
ba/c

Γ(a/c)

[−ln(1− F0(x))]

2πi

∫
L

Γ

(
a− 1

c
− s
)

Γ(s+ 1/c)

Γ(s+ 1 + 1/c)
(β[−ln(1− F0(x))]c)sds

=
ba/c

Γ(a/c)
[−ln(1− F0(x))]aG1,1

1,2

[
β[−ln(1− F0(x))]c

∣∣∣∣ 1− a/c
0,−a/c

]
, (11)

using equation (4) p.150 of [3], and

=
ba/c

Γ(1 + a/c)
[−ln(1− F0(x))]a1F1 (a/c; 1 + a/c; β[−ln(1− F0(x))]c) , (12)

using equation (1) p. 230 of [3].
The corresponding density function is given by

h1(x) =
cba/c

Γ(a/c)
[−ln(1− F0(x))]a−1e−b[−ln(1−F0(x))]c

f0(x)

1− F0(x)
. (13)
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Alternatively

h1(x) =
dF (x)

dx
.

Theorem 2.2. For 0 < x < 1[
−ln(1− x)

x

]δ
=
∞∑
r=0

[
r∑

k=0

(−1)r−k(−δ)r−k
(r − k)!

C(k)(r−k)

]
xr,

where

C(0)(t) =

(
1

2

)t
,

and

C(m)(t) =
2

m

m∑
l=1

(l(t+ 1)−m)

l + 2
C(m−l)(t), m ≥ 1.

Proof.

Using Taylor expansion of function −ln(1−x)
x

we have

S =

[
−ln(1− x)

x

]δ
=

(
1 +

x

2
+
x2

3
+ . . .

)δ
=

(
1 + x

∞∑
l=0

blx
l

)δ

= (1 + xS1)
δ, (14)

where bl = 1
l+2

and S1 =
∑∞

l=0 blx
l. Then

S =
∞∑
r=0

(−1)r(−δ)r
r!

xrSr1 , (15)

But

Sr1 =
∞∑
k=0

C(k)(r)x
k,

with

C(0)(r) = br0 =

(
1

2

)r
,

and

C(m)(r) =
2

m

m∑
k=1

(k(r + 1)−m)

k + 2
C(m−k)(r), m ≥ 1,
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Using

∞∑
r=0

∞∑
k=0

A(r, k)xr+k =
∞∑
r=0

(
r∑

k=0

A(r − k, k)

)
xr, (16)

we finally get

S =
∞∑
r=0

(
r∑

k=0

(−1)r−k(−δ)r−k
(r − k)!

C(k)(r−k)

)
xr, 0 < x < 1. (17)

It may be observed that the corresponding expression used by Pinho et al. [6] is
incorrect.

Theorem 2.3 H1(x) is an infinite linear combination of powers of the base distri-
bution F0(x).

Proof. We can write H1(x) (9) in the following form

H1(x) =
ba/c

Γ(1 + a/c)

∞∑
r=0

(a/c)r(−b)r

r!(1 + a/c)r
[−ln(1− F0(x))]a+rc

=
ba/c

Γ(1 + a/c)

∞∑
r=0

(a/c)r(−b)r

r!(1 + a/c)r
(F0(x))a+cr[

−ln(1− F0(x))

F0(x)
]a+rc

=
ba/c

Γ(1 + a/c)

∞∑
r=0

∞∑
m=0

m∑
k=0

(a/c)r(−b)r

r!(1 + a/c)r

(−1)m−k(−a− cr)m−k
(m− k)!

C(k)(m−k)×

× (F0(x))a+cr+m, (18)

where

C(0)(m) =

(
1

2

)m
,

and

C(n)(m) =
2

n

n∑
l=1

(l(m+ 1)− n)

l + 2
C(n−l)(m), n ≥ 1.

A special case of Theorem 2.3 was incorrectly proved by Pinho et al. [6] where
they used a wrong series expansion. This was also pointed out by Castellares and
Lemonte [1] who gave another series expansion different from the result given in
Theorem 2.2.
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Hence, the generalized gamma-generated distribution function is always an in-
finite linear combination of the “new” distribution function

G0(x) = [F0(x)]a+cr+m.

Theorem 2.4. The second generalized gamma-generated class of distribution func-
tion corresponding to base distribution F0(x) are given by

H2(x) = 1− ba/c

Γ(1 + a/c)
(−ln(F0(x)))a 1F1

(a
c

; 1 +
a

c
;−b (−ln(F0(x)))c

)
(19)

The corresponding density function is

h2(x) =
cba/c

Γ(a/c)
(−ln(F0(x)))a−1e−b(−ln(F0(x)))c

f0(x)

F0(x)
. (20)

Proof. We have

H2(x) = 1− cba/c

Γ(a/c)

∫ −ln(F0(x))

0

wa−1e−bw
c

dw

= 1− ba/c

Γ(1 + a/c)
(−ln(F0(x)))a 1F1

(a
c

; 1 +
a

c
;−b (−ln(F0(x)))c

)
, (21)

as before.

Theorem 2.5. H2(x) is an infinite linear combination of powers of the base dis-
tribution F0(x).

Proof. Using expansion of (19), we arrive at

H2(x) = 1− ba/c

Γ(1 + a/c)

∞∑
r=0

(a/c)r(−b)r

r!(1 + a/c)r
(−ln(F0(x)))a+cr .

Now,

(−ln(F0(x)))a+cr = (1− F0(x))a+cr
[
− ln(1− (1− F0(x)))

1− F0(x)

]a+rc
=

∞∑
m=0

m∑
k=0

(−1)m−k(−a− cr)m−k
(m− k)!

C(k)(m−k)(1− F0(x))a+cr+m

=
∞∑
m=0

m∑
k=0

∞∑
s=0

(−1)m−k(−a− cr)m−k
(m− k)!

C(k)(m−k)
(−a− cr −m)s

s!
×

× F0(x)s, (22)
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by using the expansion (1 + x)α =
∑∞

s=0
(−x)s(−α)s

s!
.

Oluyede et al. [5] proved incorrectly a particular case of Theorem 2.5 by using
a wrong series expansion employed by Pinho et al. [6].

3. GG-EW and GG-D distributions

Using F01(x) of (1) and f01(x) of (2) in (10) for F0(x) and f0(x) respectively we
define the Gamma-generated exponential Weibull density function (GG-EW) as

h2(x) =
cba/c(−lnF01(x))a−1e−b(−lnF01(x))cf01(x)

Γ(a/c)F01(x)

=
cba/cuvαaxv−1e−ux

v [−ln
(
1− e−uxv

)]a−1
e−b[−αln(1−e−ux

v
)]
c

Γ(a/c) [1− e−uxv ]
. (23)

Substituting B = bαc, which removes the non-identifiability of (23), h2(x) is
rewritten as

h2(x) =
cBa/cuvxv−1e−ux

v [−ln
(
1− e−uxv

)]a−1
e−B[−ln(1−e−uxv )]

c

Γ(a/c) [1− e−uxv ]
. (24)

The model (24) is modified by replacing x by x−µ
σ

where µ is a location parameter
and σ a scale parameter. This modified model h2m is used in the next section to
analyse two data sets:

h2m(x) =
h2
(
x−µ
σ

)
σ

. (25)

Using F02(x) of (3) and f02(x) of (4) in (10) for F0(x) and f0(x) respectively,
the GG-Dagum density function is defined by

h1(x) =
cba/c (−ln(1− F02(x)))a−1 e−b(−ln(1−F02(x)))

c
f02(x)

Γ(a/c) [1− F02(x)]

=
cba/c

(
−ln(1− (1 + λx−α)−β)

)a−1
e−b(−ln(1+λx−α)−β)

c

αβλx−α−1(1 + λx−α)−β−1

Γ(a/c) [1− (1 + λx−α)−β]

=
cba/cαβλx−α−1(1 + λx−α)−β

(
−ln(1− (1 + λx−α)−β)

)a−1
e−b(−ln(1+λx−α)−β)

c

Γ(a/c) [1− (1 + λx−α)−β]
.

(26)

By replacing x by x−µ
σ

in (26) where µ and σ are location and scale parameters
respectively, the modified model h1m is given by

h1m(x) =
h1
(
x−µ
σ

)
σ

. (27)
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The density functions in (25) and (27) are used in analysing two data sets in
the next section.

4. Applications

In this section, we apply the two distributions introduced in this paper to two real
data sets. The informations criterion AIC, BIC and AICC are given by

AIC = −2log(f(x|θ)) + 2p; (28)

BIC = −2log(f(x|θ)) + plog(n);

AICC = −2log(f(x|θ)) + 2
p(p+ 1)

n− p− 1
,

where log(f(x|θ)) is the log-likelihood function, p the number of parameters of
models and n the sample size. The models that have lower AIC, BIC and AICC
values are the best.

The MSE, MDA and MaxD are given by

MSE =

∑n
i=1 (Fe(xi)− F̂ (xi))

2

n
(29)

MAD =

∑n
i=1 |Fe(xi)− F̂ (xi)|

n

MaxD = max(|Fe(xi)− F̂ (xi)|), i = 1, . . . , n,

where Fe(xi) is the empirical cumulative distribution and F̂ (xi) the fitted cumu-
lative distribution of the data. The models that have minimum values of MSE,
MAD and MaxD (close to zero) are the best. A general R code for fitting the
distributions introduced in this paper is given in Appendix.

4.1 Application 1: Expenditure on Education

The first data set giving the total spending on public education (% of GDP - Gross
Domestic Product) in various countries in 2003, has unimodal and asymmetrical
behavior. These data are given in the site www.worldbank.org [8]. The expendi-
ture on public education includes the current and capital spending by private and
government agencies, educational institutions both public and private, as well as
educational administration and subsidies to private (student / family) entities.

The software R is used in (27) and (25) respectively to calculate the esti-
mates of the parameters through maximum likelihood method and the R function
constrOptim [7] is used to maximize the log-likelihood function. The maximum
likelihood estimates for the parameters of the models are given by:
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• GG-EW: û = 1.64 × 10−11, v̂ = 4.22, α̂ = 2.16, â = 19.49, B̂ = 0.3233, ĉ =
1.55, µ̂ = 0.21 and σ̂ = 0.13;

• GG-Dagum: β̂ = 0.0087, λ̂ = 0.0018, α̂ = 14.42, â = 13.16, b̂ = 0.0004, ĉ =
2.92, µ̂ = −2.19 and σ̂ = 2.41.

The Figure 1 illustrates the fit of the distributions. The Figure 2 illustrates the
pp plot of the two distributions. The performance of the two fitted distributions is
given in Table 1. The p-value of the KS test tells us that both the distributions can
be used to model the data. Both the distributions presented same values of AIC,
BIC and AICC. The GG-EW distribution indicated better results as compared to
the GG-Dagum distribution (smaller values of MSE, MAD and MaxD).

Table 1: Performance and accuracy of the distributions.

Model AIC BIC AICC
KS-Test
(p-value)

MSE MAD MaxD

GG-EW 448.233 426.413 462.848 0.9818 0.0004 0.0171 0.0591
GG-Dagum 448.233 426.413 462.848 0.866 0.0007 0.0188 0.0773

(a) Probability density function.



16 J. of Ramanujan Society of Math. and Math. Sc.

(a) Cumulative distribution.

Figure 1: Education data - Fitted distributions. [1] Generalized Gamma-generated
Exponential Weibull distribution. [2] Generalized Gamma-generated Dagum dis-
tribution.

(a) Skew Normal-GL.



On the generalized gamma-generated distributions and applications 17

(a) Skew GL-Normal.

Figure 2: Education data - PP-Plot.

4.2 Application 2: Expenditure on Health

The second data set has assymetric behavior, and relates to the total expenditure,
in 2009, on health (% of GDP - Gross Domestic Product) in various countries.
These data are obtained from the site data.worldbank.org [9]. Total health expen-
diture is the sum of expenses with public and private health and also covers the
provision of health services (preventive and curative), family planning activities,
nutrition activities and emergency aid designated for health but does not include
water supply and sanitation.

The maximum likelihood method is used on (27) and (25) respectively to esti-
mate the model parameters. The software R is used to calculate estimates of the
parameters by using the R function constrOptim [7] to maximize the log-likelihood
function. The maximum likelihood estimates for the parameters of the models are
given by:

• GG-EW: û = 3.83 × 10−11, v̂ = 3.97, α̂ = 2.16, â = 15.85, B̂ = 0.3662, ĉ =
1.55, µ̂ = 0.208 and σ̂ = 0.118;

• GG-Dagum: β̂ = 0.10, λ̂ = 0.004, α̂ = 13.81, â = 13.26, b̂ = 0.0003, ĉ =
2.90, µ̂ = −2.05 and σ̂ = 2.32.
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The Figure 3 illustrates the fit of the distributions. The Figure 4 illustrates the
pp plot of both the distributions. The performance of both the fitted distributions
is included in Table 2. Looking the p-value of the KS test, both the distributions
can be used to model the data. The GG-EW distribution indicated better results
as compared to the GG-Dagum distribution (smaller values of MSE, MAD and
MaxD). Both the distributions presented same values of AIC, BIC and AICC.

Table 2: Performance and accuracy of the distributions.

Model AIC BIC AICC
KS-Test
(p-value)

MSE MAD MaxD

GG-EW 448.233 421.047 463.553 0.9774 0.0002 0.0116 0.0451
GG-Dagum 448.233 421.047 463.553 0.9004 0.0003 0.0127 0.0513

(a) Probability density function.
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(b) Cumulative distribution.

Figure 3: Health data - Fitted distributions. [1] Generalized Gamma-generated
Exponential Weibull distribution. [2] Generalized Gamma-generated Dagum dis-
tribution.

(a) Skew Normal-GL.
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(b) Skew GL-Normal.

Figure 4: Health data - PP-Plot.

5. Conclusions

Two forms of generalized gamma-generated distributions with any base distribu-
tion are given along with two of its particular cases (GG-EW and GG-Dagum)
involving exponentiated Weibull and Dagum distributions as base distributions. It
is shown, in general, that the generalized gamma-generated distributions are infi-
nite linear combinations of distributions which are powers of the base distributions.
As applications, the GG-EW and GG-Dagum distributions are used to analyse the
two real data sets involving expenditures on education and health, showing that
the distributions are flexible to adjust asymmetric data with unimodal behaviour.
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Appendix: General R codes

The general R codes for fitting the two distributions introduced in this paper are
given below.
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GG-EW distribution

#READ THE DATA

data <- read.csv(file.choose(), header=T, stringsAsFactor=F, sep=’;’)

################GG-WE - DENSITY################

dwe <- function(y,u,v,alpha,mu,sigma){

z <- (y-mu)/sigma

dens=((u*v*alpha)/sigma)*(z**(v-1))*exp(-u*(z**v))*

((1-exp(-u*(z**v)))**(alpha-1))

return(dens)

}

pwe <- function(y,u,v,alpha,mu,sigma){

z <- (y-mu)/sigma

pdens=((1-exp(-u*(z**v)))**alpha)

return(pdens)

}

dggwe <- function(y,u,v,alpha,a,b,c,mu,sigma){

z <- (y-mu)/sigma

const=(c*(b**(a/c)))/gamma(a/c)

r=dwe(y=y, mu=mu, sigma=sigma, u=u, v=v, alpha=alpha)/

pwe(y=y, mu=mu, sigma=sigma,

u=u, v=v, alpha=alpha)

dens=(const)*((-log(pwe(y=y, mu=mu, sigma=sigma, u=u,

v=v, alpha=alpha)))**(a-1))*

exp(-b*((-log(pwe(y=y, mu=mu, sigma=sigma, u=u, v=v,

alpha=alpha)))**c))*r

return(dens)

}

#GIVE THE INITIAL PARAMETERS HERE

theta <- theta0

#LOG-LIKELIHOOD FUNCTION

loglik <- function(pars){

u <- pars[1]

v <- pars[2]

alpha <- pars[3]

a <- pars[4]

b <- pars[5]

c <- pars[6]
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mu <- pars[7]

sigma <- pars[8]

logl <-sum(log(dggwe(x,u=u,v=v,alpha=alpha,a=a,b=b,c=c,

mu=mu,sigma=sigma)))

return(-logl)

}

#FIT

fit=constrOptim(theta=theta, f=vero,

ui=rbind(c(1, 0, 0, 0, 0, 0, 0, 0),

c(0, 1, 0, 0, 0, 0 ,0 ,0),

c(0, 0, 1, 0, 0, 0, 0, 0),

c(0, 0, 0, 1, 0, 0, 0, 0),

c(0, 0, 0, 0, 1, 0, 0, 0),

c(0, 0, 0, 0, 0, 1, 0, 0),

c(0, 0, 0, 0, 0, 0, 0, 1)), ci=c(0, 0, 0, 0, 0, 0, 0)

, method="Nelder-Mead", outer.iterations=300)

GG-Dagum distribution

#READ THE DATA

data <- read.csv(file.choose(), header=T, stringsAsFactor=F, sep=’;’)

################GG-Dagum - DENSITY################

ddagum <- function(y,beta,lambda,alpha,mu,sigma){

z <- (y-mu)/sigma

dens=((beta*lambda*alpha)/sigma)*(z**(-alpha-1))*((1+lambda*

(z**(-alpha)))**(-beta-1))

return(dens)

}

sdagum <- function(y,beta,lambda,alpha,mu,sigma){

z <- (y-mu)/sigma

pdens=1-(1+lambda*(z**(-alpha)))**(-beta)

return(pdens)

}

dggdagum <- function(y,beta,lambda,alpha,a,b,c,mu,sigma){

z <- (y-mu)/sigma

const=(c*(b**(a/c)))/gamma(a/c)

r=ddagum(y=y, beta=beta, lambda=lambda, alpha=alpha,mu=mu,

sigma=sigma)/ sdagum(y=y, beta=beta, lambda=lambda,
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alpha=alpha,mu=mu,sigma=sigma)

dens=(const)*((-log(sdagum(y=y, beta=beta, lambda=lambda,

alpha=alpha,mu=mu,sigma=sigma)))**(a-1))*exp(-b*((-log(

sdagum(y=y, beta=beta, lambda=lambda, alpha=alpha,

mu=mu,sigma=sigma)))**c))*r

return(dens)

}

#GIVE THE INITIAL PARAMETERS HERE

theta <- theta0

#LOG-LIKELIHOOD FUNCTION

loglik <- function(pars){

beta <- pars[1]

lambda <- pars[2]

alpha <- pars[3]

a <- pars[4]

b <- pars[5]

c <- pars[6]

mu <- pars[7]

sigma <- pars[8]

logl <-sum(log(dggdagum(x, beta=beta, lambda=lambda, alpha =alpha,

a=a, b=b, c=c, mu=mu, sigma=sigma)))

return(-logl)

}

#FIT

fit=constrOptim(theta=theta, f=vero,

ui=rbind(c(1, 0, 0, 0, 0, 0, 0, 0),

c(0, 1, 0, 0, 0, 0 ,0 ,0),

c(0, 0, 1, 0, 0, 0, 0, 0),

c(0, 0, 0, 1, 0, 0, 0, 0),

c(0, 0, 0, 0, 1, 0, 0, 0),

c(0, 0, 0, 0, 0, 1, 0, 0),

c(0, 0, 0, 0, 0, 0, 0, 1)), ci=c(0, 0, 0, 0, 0, 0, 0)

, method="Nelder-Mead", outer.iterations=300)


